Diving Down the Concurrency
Rabbit Hole

Mike Acton
macton@insomniacgames.com

Expectations...

e Start to unlearn "traditional"” approach to concurrency issues
e Assume some knowledge of concurrency approaches

Expectations...

e Provide the rationale behind alternative approaches
e Understanding why data/solutions are fundamentally
different.

Expectations...

_ater ta
|_ater ta

_ater ta

~irst in a series of concurrency optimization talks

KS provide examples
KS provide common patterns and solutions

Ks focus a lot on lock/walit-free techniques

Expectations...

e There are "thinking points" in here
e Unanswered questions as exercises

Expectations...

e | like to go off on interesting tangents.
e But you may already know that.

Reference Problem

But replacing locks wholesale by writing your own lock-free
code is not the answer. Lock-free code has two major
drawbacks. First, it's not broadly useful for solving typical
problems—Iots of basic data structures, even doubly linked
lists, still have no known lock-free implementations.

Lock-Free Code: A False Sense of Security
Herb Sutter
http://www.ddj.com/cpp/210600279

http://www.ddj.com/cpp/210600279#

Reference Problem

But replacing locks wholesale by writing your own lock-free
code is not the answer. Lock-free code has two major
drawbacks. First, it's not broadly useful for solving typical
problems—Iots of basic data structures, even doubly linked
lists, still have no known lock-free implementations.

Lock-Free Code: A False Sense of Security
Herb Sutter
http://www.ddj.com/cpp/210600279

As an aside, | disagree with the point above. But
that's a topic for a different day.

http://www.ddj.com/cpp/210600279#

Reference Problem

e The reference problem is just for context.
e No lock-free doubly-linked list here.
e Rather, background on why it's not an important problem.

Reference Problem

Should expect to understand:
e A doubly-linked list will not meet real constraints of a
concurrent system.
e i.e. It's not going to be the solution/data to a concurrent
problem.
e If it's used, it's only in a local context.

Reference Problem

Should expect to learn:
e \Why and how concurrent data design is different.

Why would data structures be
different for concurrent
designs?

Why would data structures change?

e Doubly-linked lists solve a particular set of problems
e The concurrent "version" is a different problem
e Data is designed around the problem(s) being solved.

It's always about the data!

| will repeat this point a lot.
Why?

Because it's important!

The Question

Is something like this the best data fit for any concurrency
problem?

struct Node

{
Node* next;
Node* prev;
Packet* data;

};

The data structure itself implies a different kind of problem
(i.e. local)

Defining Order

struct Node

{
Node* next; <-- Defines an order
Node* prev; <-- (That's the point.)
Packet* data;

};

Transform Order

struct Node

{
Node* next; <-- But WHY is it defined

Node* prev; <-- this way in 1lst place?
Packet* data;
};

Transform Order

struct Node

{
Node* next; <-- But WHY is it defined

Node* prev; <-- this way in 1lst place?
Packet* data;
};

e It's to make certain operations easier.
e And give those operations certain properties.
e e.0. Insert, Delete

Transform Order

struct Node

{
Node* next; <-- But WHY is it defined

Node* prev; <-- this way in 1lst place?
Packet* data;
}

e.g. Insert

So that sequential insert instructions would:
e Have constant insert time
e Have a guaranteed (predictable) result
e Could be inserted before or after given any node
e efc.

Need to define what the
transformations must do
before you can define what
the data is.

Operations in a concurrent
system would not have the
same meaning.

The properties of those
operations (constraints) would
also be different.

Let's look at the "same”
problem as a conccurent
operation...

Lk

i e
g = .
-

WHAT CAN Yol
EUALANTLT AGORT
Té oentr wek€

L .. an Al

WHIcH OrDER 1S “Corezer™ € '

- [AOFEHE

o < coco ¥ 1
(AP IHE

[APEFEFE

.
-
-
)
L
3

Concurrent insert operation
needs explicit ordering rule.
(Extra dimention of info.)

The data structure would be
different to accommodate
ordering rule.

|s that all the extra information
needed?

Hint: No.

So how would we solve the
concurrent problem?

Concurrent data would be
divided In to shared and
unshared data for xforms.

e Doubly-linked list makes no such distinction.
e All sequential data structs presume all shared.

Concurrent data would be
divided by
readers and writers of data.

e Doubly-linked list makes no such distinction.
e All sequential data structs presume anywhere
read/write.

Look at any level of
parallelism to see shared data
for transforms.

: —
.-;H. S

: / ;:f 'ﬁﬂS’T- VA‘IIW PAALLL LA SN T

— (ASTRUCTY Led 2C

- Mmunlt - tHacAOL
= mult - ont (SHA O pMem
— MWL - (M&, ”Jl)iﬂiNOfNT M(M

~ mutLl - MACHINES

Note:

Data file just generic term for organized data.
e.g.

e Regqisters

e Cache (lines)

e Main memory

e ...or actual file on disk.

oncurrency Is not a system-
wide property

Doubly-linked list data struct assumes all
operations follow the same (sequential) rules.

Every concurrent operation
must have explicitly defined
rules.

Data is designed that satisfies
all the rules.

But sometimes, attempts are
made to use "sequential rules”

For example...

FW{MT ABOUT USING

TimeSTAMPS To CoNTEOL
ORVER <

- WHAT ABour usSinveb
TIMeSTAMPS To CoNTEDL

ORDER <

4 .._'f'THlS 1S NoT |
 CONCARLEPCY -

R 2 Tahs 15 neT
CONCNLLTPCY -

. Hiwevt---

F

CONCARLEPCY -

Cpo s
: ﬁ 7en ",
[A/ _
ey nc); rent ©

. eafws
t* o

e
a)h\curu.frx“\

”f Le/c /5

, IR
= Cleck
(3

.
-“ -

S0 sometimes using
sequential rules work.

And sometimes it's the "right”
thing to do.

But it must be done In a well-
informed way.

(Know that's what you're
doing!)

What needs to be solved per
operation?

F (oncageencq 1S FIRST

SqMCHQON‘:I—A‘TION

.
.
o
b

Coﬂcmﬁﬂtﬂfﬂ 1S f__!E-_S_I
SyncHRon (TAT1N

But how do you know what the
conflicts are?

JIRZ OV Y7 7

l.e. Understand the data!

(It always comes down to this)

Defining an concurrent
Insert operation:

What would it mean?

T —— e —— S— -

-

PnT. ..

_VSERT (<) AETee (AD
 INSECT (D) AFTER (K)

How S\ 5
Has no HAYOE2 ™ g0

VliANlnIt; ERAL

AP an D I.—rr""ﬂ'i(ffﬂl !

- INSERT (<) AFTeR (A
"INSECT (D) AFTER (A)

wWHAT OpES
AS No 1T mean 7 ¢,

AN 4 ki)
MR ETT 9435T5m !

How might you answer these
questions?

. il 4R b =
F, (13 dy !
” & B B
il & [T I =
= [E B F
Pt | TR .
5 .

But these requirements and
rules can only be defined
In context

|
J
a

T

.-r_-"\""

R

Different answers to each
guestion would change the
data structure required.

=
il

IM\TEO - S¢nese LsTS oF _
Iifsouce ALLO(ATE0 N0ES

— VALIABLE ufawg

- DIFF “Ouﬂtﬂ_s“ v

i
:1_

DIFF LISTS

:-;;;- ?? sz Lists of
LLe -m'fto Moo €S

- pumes” ,
IFF LISTS

T

& 5
™4
(.

-

- SPaese LsTS oF
muarrw N0 €S

unwAeS

N F B
| Ld" i

wsi LISTS ——
. Oh'w pwts

Returning to the Question

Which answers/context does this structure match?

struct Node

{
Node* next;
Node* prev;
Packet* data;

}

Returning to the Question

Which answers/context does this structure match?

struct Node

{
Node* next;
Node* prev;
Packet* data;

b

NONE. Each set of rules for concurrent ops and requirements
for latency, etc. would require a completely different struct.

So how to define what the
data would be?

Hardware is the beginning.

Concurrency problems can't
be abstracted from how
hardware works.

l.e. What are the basic
"primitives” to build
concurrency solutions with?

Mutexes?

Semaphores? Mailboxes?

Events?

1 ukency St ?s ¢l
-ému: Froasoctron

#1 Practical Take-Away:

Know how to do lock-free

atomic transaction on your
hiw.

#1 Practical Take-Away:

Know how to do lock-free

atomic transaction on your
hiw.

e The fundamental data operation.
e Lock-free techniques built on top of this.

¥ .'_I ; | ﬁFo ' “o c \ IJ:“'"T g

- FELH E
- o S
] A i -
; Y ey L
S r

Note

In-order and out-of-order refers to load/store unit.

AKA weakly-ordered loads/stores
AKA load/store re-ordering

e.g.
SPU is in-order processor,
but MFC on SPU is not (out of order DMAS)

“ ALSo MeTE
Lantuate [ComRLe®

Knowing h/w allows adding
minimal sync points.

And..

} 2O (o0 CARRENCYH

2O (ol CUuri enNCH
DosSN'T ADO UNNEEOED

Okay,
So now what needs to be
defined BEFORE we can even
begin to define the data?

ZZU (0 N owcs -
 —How wltt RTA BE

TRANSF9RMED ©

_ wHAT Ace THE

- _ WHAT Ace THE I
Con STRAINTS ©

Do that and you're on your
way.

Next set of talks will apply these
lessons to optimizing data for
specific examples.

But the "optimized" part will
iIntroduce something new...

Here's a little teaser...

Thanks!

Great feedback from Bjoern Knafla (@bjoernknafla on twitter).
Plus he came up with the name for the presentation.

Also thanks for feedback: @MarcoSalvi, @rickmolloy

Also thanks Rob Wyatt for feedback - and for suggestions on
even more fun problems and complex cases that we could
cover to make the presentation even longer next time.

