
Diving Down the Concurrency
Rabbit Hole

Mike Acton
macton@insomniacgames.com

Expectations...

Start to unlearn "traditional" approach to concurrency issues
Assume some knowledge of concurrency approaches

Expectations...

Provide the rationale behind alternative approaches
Understanding why data/solutions are fundamentally
different.

Expectations...

First in a series of concurrency optimization talks
Later talks provide examples
Later talks provide common patterns and solutions
Later talks focus a lot on lock/wait-free techniques

Expectations...

There are "thinking points" in here
Unanswered questions as exercises

Expectations...

I like to go off on interesting tangents.
But you may already know that.

Reference Problem

But replacing locks wholesale by writing your own lock-free
code is not the answer. Lock-free code has two major
drawbacks. First, it's not broadly useful for solving typical
problems—lots of basic data structures, even doubly linked
lists, still have no known lock-free implementations.

Lock-Free Code: A False Sense of Security
Herb Sutter
http://www.ddj.com/cpp/210600279

http://www.ddj.com/cpp/210600279#

Reference Problem

But replacing locks wholesale by writing your own lock-free
code is not the answer. Lock-free code has two major
drawbacks. First, it's not broadly useful for solving typical
problems—lots of basic data structures, even doubly linked
lists, still have no known lock-free implementations.

Lock-Free Code: A False Sense of Security
Herb Sutter
http://www.ddj.com/cpp/210600279

As an aside, I disagree with the point above. But
that's a topic for a different day.

http://www.ddj.com/cpp/210600279#

Reference Problem

The reference problem is just for context.
No lock-free doubly-linked list here.
Rather, background on why it's not an important problem.

Reference Problem

Should expect to understand:
A doubly-linked list will not meet real constraints of a
concurrent system.
i.e. It's not going to be the solution/data to a concurrent
problem.
If it's used, it's only in a local context.

Reference Problem

Should expect to learn:
Why and how concurrent data design is different.

Why would data structures be
different for concurrent

designs?

Why would data structures change?

Doubly-linked lists solve a particular set of problems
The concurrent "version" is a different problem
Data is designed around the problem(s) being solved.

It's always about the data!

I will repeat this point a lot.

Why?

Because it's important!

The Question

Is something like this the best data fit for any concurrency
problem?

struct Node
{
 Node* next;
 Node* prev;
 Packet* data;
};

The data structure itself implies a different kind of problem
(i.e. local)

Defining Order

struct Node
{
 Node* next; <-- Defines an order
 Node* prev; <-- (That's the point.)
 Packet* data;
};

Transform Order

struct Node
{
 Node* next; <-- But WHY is it defined
 Node* prev; <-- this way in 1st place?
 Packet* data;
};

Transform Order

struct Node
{
 Node* next; <-- But WHY is it defined
 Node* prev; <-- this way in 1st place?
 Packet* data;
};

It's to make certain operations easier.
And give those operations certain properties.
e.g. Insert, Delete

Transform Order

struct Node
{
 Node* next; <-- But WHY is it defined
 Node* prev; <-- this way in 1st place?
 Packet* data;
};

e.g. Insert

So that sequential insert instructions would:
Have constant insert time
Have a guaranteed (predictable) result
Could be inserted before or after given any node
etc.

Need to define what the
transformations must do

before you can define what
the data is.

Operations in a concurrent
system would not have the

same meaning.

The properties of those
operations (constraints) would

also be different.

Let's look at the "same"
problem as a conccurent

operation...

Concurrent insert operation
needs explicit ordering rule.

(Extra dimention of info.)

The data structure would be
different to accommodate

ordering rule.

Is that all the extra information
needed?

 Hint: No.

So how would we solve the
concurrent problem?

Concurrent data would be
divided in to shared and

unshared data for xforms.

Doubly-linked list makes no such distinction.
All sequential data structs presume all shared.

Concurrent data would be
divided by

readers and writers of data.

Doubly-linked list makes no such distinction.
All sequential data structs presume anywhere
read/write.

Look at any level of
parallelism to see shared data

for transforms.

Note:

Data file just generic term for organized data.
e.g.

Registers
Cache (lines)
Main memory
...or actual file on disk.

Concurrency is not a system-
wide property

Doubly-linked list data struct assumes all
operations follow the same (sequential) rules.

Every concurrent operation
must have explicitly defined

rules.

Data is designed that satisfies
all the rules.

But sometimes, attempts are
made to use "sequential rules"

 For example...

So sometimes using
sequential rules work.

And sometimes it's the "right"
thing to do.

But it must be done in a well-
informed way.

(Know that's what you're

doing!)

What needs to be solved per
operation?

But how do you know what the
conflicts are?

i.e. Understand the data!

(It always comes down to this)

Defining an concurrent
insert operation:

What would it mean?

How might you answer these
questions?

But these requirements and
rules can only be defined

in context

Different answers to each
question would change the

data structure required.

Returning to the Question

Which answers/context does this structure match?

struct Node
{
 Node* next;
 Node* prev;
 Packet* data;
};

Returning to the Question

Which answers/context does this structure match?

struct Node
{
 Node* next;
 Node* prev;
 Packet* data;
};

NONE. Each set of rules for concurrent ops and requirements
for latency, etc. would require a completely different struct.

So how to define what the
data would be?

Hardware is the beginning.

Concurrency problems can't
be abstracted from how

hardware works.

i.e. What are the basic
"primitives" to build

concurrency solutions with?

Semaphores?

Mutexes?

Events?

Mailboxes?

#1 Practical Take-Away:

Know how to do lock-free
atomic transaction on your

h/w.

#1 Practical Take-Away:

Know how to do lock-free
atomic transaction on your

h/w.

The fundamental data operation.
Lock-free techniques built on top of this.

Note

In-order and out-of-order refers to load/store unit.

AKA weakly-ordered loads/stores
AKA load/store re-ordering

e.g.
SPU is in-order processor,
but MFC on SPU is not (out of order DMAs)

Knowing h/w allows adding
minimal sync points.

And..

Okay,
So now what needs to be

defined BEFORE we can even
begin to define the data?

Do that and you're on your
way.

Next set of talks will apply these
lessons to optimizing data for
specific examples.

But the "optimized" part will
introduce something new...

Here's a little teaser...

Thanks!

Great feedback from Bjoern Knafla (@bjoernknafla on twitter).
Plus he came up with the name for the presentation.

Also thanks for feedback: @MarcoSalvi, @rickmolloy

Also thanks Rob Wyatt for feedback - and for suggestions on
even more fun problems and complex cases that we could
cover to make the presentation even longer next time.

